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Abstract  With reference o a well known viscoplasticity law it 1s shown how the equilibrium curve
associated with a process can be determined. Furthermore. for this viscoplasticity law, an analysis
is given for the rate- and material parameter-dependent limit response. In particular. it turns out
that for very slow motions. the strain-stress relation converges evervwhere to a plasticity model.
However. the time derivatives of the variables in this plasticity law are not everywhere equal to the
limit for very slow motions of the corresponding time derivatives in the viscoplasticity law.

I INTRODUCTION

An analysis of the limit response for very fast and very slow motions in the case of the
general linear viscoelasticity law is given by Gurtin and Herrera (1965). In the case of
nonlinear viscoelasticity laws as well as viscoplasticity laws, given in the one-dimensional
form

g = Flo. )i+l o).

the corresponding limit response is discussed by Gurtin er ¢f. (1980). Here, o and ¢ are the
one-dimensional stress and strain. respectively. ¢ and & the corresponding material time
derivatives. and £ denotes a smooth and strictly positive function. The function G was
postulated to be smooth for viscoelastic materials. and piece-wise smooth with G =0 ona
suitable region for viscoplastic materials. Note that the analysis of Gurtin and Herrera
(1965), as well as of Gurtin er al. (1980). s based on the 1dea of accelerating and retarding
a given strain history.

The present work is concerned with viscoplasucity laws represented in three-dimen-
sional form, and formulated by means of internal variables. The characteristic feature of
the evolution equations for the internal variables used 1s that they fail in the general
framework for defining viscoplasticity laws postulated by Kratochvitl and Dillon (1969).
For computational simplicity. only kinematic and 1sotropic hardening are considered here.
In particular, we consider a well known viscoplasticity law in which nonlinear kinematic
hardening properties of the Armstrong-Frederick tvpe are icorporated [see Armstrong
and Frederick (1966} as well as Chaboche (1977)]. The purpose of this work 1s to calculate
for this viscoplasticity law the equilibrium curve assoctated with a process, and to investigate
the himiting cases for very fast and very slow motions. In addition to the limit response of
the strain-stress relation. the limit response ot the time derivatives of the variables involved
in the system of constitutive equations is also discussed. To that end, we follow the above
works of Gurtin ¢r al. by using the 1dea of accelerating and retarding a given strain history.
As it will prove. this analysis 1s equivalent 1o considering corresponding limit processes
depending on the viscosity parameter in the constitutive relations. Note that no attempt is
made to comment on the physical relevance of the viscoplasticity model and its limit
responses.

After introducing some notations and definitons in Section 2. the viscoplasticity law
to be investigated is given in Section 3. The structure of this viscoplasticity law is based on
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the concept of so-called overstresses, and it is shown how the equilibrium curve associated
with a process is to be established. In Section 4, various limits for very fast and very slow
motions are calculated. In particular, we obtain for very slow motions the result that the
system of constitutive equations reduces to a plasticity law.T However, it is shown in Section
5 that the time derivatives of the variables in this plasticity law are not everywhere equal
to the limit for very slow motions of the corresponding time derivatives in the viscoplasticity
law. Note that some of the results derived in Sections 4 and S are given by Haupt ez al.
(1992) as well, but from the technical point of view, the proof given here differs from that
given by Haupt et al. In addition, Section 5 deals with some time transformations which
can be applied to extend the viscoplasticity law considered in order to obtain a nonlinear
dependence on the overstress used. Finally, the analysis for the rate-dependent limiting
cases on the basis of material parameters is briefly sketched.

2. PRELIMINARIES

Let R be the real axis. For ae R. |4l is the absolute value of a. We write ¢ for the time
variable, and denote by f(¢) the material time derivative of the function f(), where te I and
I'is an interval of R. We say that the function f(¢) is smooth if f(¢) exists at each re1, and
if the function f(¢) is continuous on /. For xe R, {x) represents the function

< \> P

v oafx =0
{0 ifx <0
Since the formulation is not affected by a space dependence, an explicit reference to space
will be dropped. In this work, so-called static recovery-effects are not taken into account.
Furthermore, the material parameters used take values on the real interval (0, o0), and the
deformations considered are small isothermal deformations.

We use bold-face letters for second-order tensors and write % for the set of all second-
order tensors. In particular, 1 represents the identity second-order tensor, and AT denotes
the transpose of A. We write tr A for the trace of A, AP = A—%(tr A)1 for the deviator of
A, A-B = tr (AB") for the inner product of A and B, as well as |A|| = ./A-A for the

euclidean norm of A. We also use for AP the norm |AP|, = \/3AP - AP, referred to as the
deviatoric norm of AP,

Let E: /- # be a strain curve, 1.¢. a function that assigns each time ¢ in / a linearized
Green strain tensor E(7) e £. Analogously. a stress curve is a function T: /- %, ie. a
function that assigns each time ¢ in / a Cauchy stress tensor T(¢) € . Generally, it is
assumed that all derivatives up to any desired order exist. If I is half-open or closed, the
derivatives on the boundary points are to be understood as one-sided. It is common to
denote a continuous strain curve {stress curve) on (— o0, o¢) as a strain history E(*) (stress
history T(-)). All the time functions to be regarded below can be considered as defined in
the interval [0, T], 0 < T < o, if an appropriate translation in the time is applied. Hence,
without loss of generality, we set in the following I = [0, T]. In particular, E(t = 0) # 0 is
not excluded.

In this paper, we are concerned with constitutive functionals which are represented
implicitly, e.g. by a system of ordinary differential equations for a certain set of variables
(state variables) which is denoted by ¥ [see also Haupt (1992) in this context]. Generally,
the notion of a process with duration 7, e.g. induced by a given strain curve E: [0, T] =%,
is understood as follows. We suppose that the state of the considered material system is
known for each te[0, T] if &(¢) is known. The map assigning to each te[0, T] a value
(1) in the space of all state variables 1s called a strain-controlled process if the map is

+ We do not attempt to give here a general definition on (rate-independent) plasticity laws. Such definitions
are given, e.g., by Del Piero (1985), Lucchesi and Silhavy (1991), and Bertram (1992). In these references, use is
made of the so-called concept of elastic ranges initally introduced by Pipkin and Rivlin (1965), and Owen (1970).
For the purpose of our work it suffices to think of plasticity models as systems of constitutive relations having
properties as those defined. e.g., by Hill (1967). Lubliner (1974). Dafalias and Popov (1976), and Casey and
Naghdi (1984).
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compatible with the postulated system of constitutive equations. A stress-controlled process
is defined in exactly the same way if a stress curve on [0, T] is given instead of a strain
curve. For example, a relaxation process (creep process) is a process for which E(#) = const.
(T(#) = const.) holds. Thus, roughly speaking, (1) consists of all the variables for which
initial conditions are needed in order to calculate the material response after a time
increment, if loading conditions of stress or strain are given. We denote the set {y(t)/tel}
as an &% -path, or as an #-trajectory, or simply a state trajectory. A point #* is called an
equilibrium point if it represents an equilibrium solution of the differential equations
governing the material response.

It is assumed that every relaxation process converges for an infinitely long duration to
a corresponding equihibrium state. This motivates the introduction of a so-called equi-
librium curve as follows. Together with a strain curve E(-), cach time re ] is assigned an
equilibrium state #'®(¢). The point ¥'®(¢) can be interpreted as that obtained in a relax-
ation process with infinite long duration. This relaxation process corresponds to that process
where the strain is imagined to be held constant at the value E(¢), and begins at the point
F(t) belonging to the actual process induced, e.g. by the strain curve E(-). Then the map
assigning to each re 7 a point #'®'(r), so obtained., is called the equilibrium curve belonging
to the process (). Analogously, the set ¥ ®(1)/te 1} is called an #®-path, or an &¥®-
trajectory, or simply an equilibrium trajectory.

3. THE VISCOPLASTICITY LAW

Consider the following system of constitutive cquations:

E=E +F. (1)

T = 2uE, + +(IrE)1. (2)

F(1y = F(T.&. k)= [(T.&)—k. (3)
oy =J(T.& = (AT -8 (TP (4)
k=R ()

R, = §F—(‘;‘T§‘5) = i?(ﬁ:)“. (6)
&= (K, - hsg. (7)

k= B —kis. (8)

$i=|E = : CF 9)

W, 4,1, ¢, b,y material constants.

Here, E; and E, denote the elastic and inelastic parts, respectively, in the additive
decomposition of E, eqn (2) is referred to as the spontaneous elasticity law, & is the back
stress, k represents the variable describing isotropic hardening, and s stands for the arc
length of E; with respect to the norm |- |p.

The set of all stress tensors T satisfying F = 0 for fixed & and k describes a so-called
static yield surface in the space of all stress tensors. Analogously, the set of all stress tensors
T satistfying an equation of the form F = const. > 0 for fixed & and &, describes a so-called
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dynamic vield surface in the space of all stress tensors. The function F defines a so-called
overstress with respect to the static yield surface. +

The characteristic feature of the viscoplasticity lawi (1)—(9) is the evolution equation
for kinematic hardening due to Armstrong and Frederick (1966). This viscoplasticity model
is included in the many works by Chaboche. and is investigated by him and coauthors in
several aspects [see e.g. Chaboche (1977, 1993), Chaboche and Rousselier (1983) and
references cited therein]. We note in passing that the model (1)-(9) falls in the general
framework for the definition of viscoplasticity laws developed by Kratochvill and Dillon
(1969).

The variables

E.E.Ek (10)

form a sct ./ of state variables. as defined in Section 2. For a given strain or stress curve
and prescribed initial conditions for (10). the system of constitutive equations (1)-(9)
implies a strain- or stress-controlled process. respectively. Alternatively (and equivalently)
one can choose. e.g. T instead of E, or s instead of k. as state variables.

3.1 An equivalent representation for the overstress F
For later reference. we mention here that the overstress F can be written as well in
terms of the differential equation

. O .
F+  JF = 2R E), (1
,
where
O) = O(T(1). & k(1)) = e+ 2u) —b(E- R + Bz —k) (12)
and
) > 3 > 0. (13)

Equation (11) follows from eqns (1) (9). To obtain inequality (13), we point out that, for
the viscoplasticity law (1) (9). the relations

ko < k<. (14)
< &, <. (15)

h
0< TV &, =11 (16)

are satisfied in any process, where mnitial conditions

Es=0)=0 and AL=0)=4k, <y for E(=0)=0
are given. Note in passing that this constitutive model cannot describe cyclic softening in
view of expression (14). From the Cauchy-Schwarz inequality in the form

FFor a discussion of such notions as well as of rate-dependent constitutive equations formulated by means
of overstresses. see also Tsakmakis (1994).
T On the noton “viscoplasticity Taw’ see also Section 3 of the present work.
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NEAT=EP1< &, TV =&,

as well as egn (16). we have

ET=8" <1 O =1 &

In view of expression (13). these inequalities imph

The result (13) follows trom this inequality. the relation (14). as well as the definition (12)
for ©.
To solve the ditferential egn (111, the nital condition needed is given by

Fr= 1) = FO) = FCIon S0 kO,
where
0y := T - 0).
ED)y =& - 0.

KO) =kt - 1
If F < 0. the trivial case ol pure clasticity applies It inclastic loading is involved, i.c. if

] (FOy =0 b 1 =0
CF o= ‘ (17)
LF(n >0 a0 1e(0.T]

holds. then the differential equation

F+ F=2uR E). (18a)
-

Foe=0) = (18b)

for Fapplics. which follows from eqn (11).

A differential equation corresponding to cyn (18) was first utilized by Kratochvill and
Dillon (1969) in order to discuss limits in viscoplasticity laws depending on material
parameters. The differential equation (18) plays as well an important part in the discussion
of the rate-dependent limits in the constitutive model (1) (9). to be given in what follows.
Note that eqn (18) is the starting point in the analvsis given by Haupt er ¢f. (1992). Not all
the results obtained in the present work, however. are obtained in Haupt et a/. In addition,
as was mentioned in the Introducuon. the mathematical proof of the various results given
here 18 different from that provided by Haupt 7 uf

3.2, The associated equilibrium curre
For a given strain- or stress-controlled process. the stram-stress relation governing the
associated equilibrium curve i1s given by

E=E'-F'" (19)

F=FT.8 4 -0 (20)

T =20k - (i B (21)
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E® =E, =const., &% =& =const.. k® =k = const. (22)
F=FAT.¢.k=0: (23)

TE = 2uE® + i(tr E)1, (24)

FE(1) == F(T® (1), EP (1), kP (1)), (25)

EE = [®RE), (26)

R® = 8F(Tl2,’r?:)’ 2 _ 5 ;E, (T® —EENHP, @7

EP = B - bl E, (28)

K= Bl — k™I, (29)

poo=io 2 E (0)

O = (c+2) —bEP RE) + By~ k). 3D

For clarity, the variables E, T, E,, 5, F, £, k are replaced by the variables E® = E, T®,
E® [® FE_EE KB appropriate to the description of the equilibrium curve.

For a brief sketch of the derivation of the equations (19)—(31), we note that F®(r) = 0
and F®(7) = 0 must be satisfied along the equilibrium trajectory. In addition, it is verified
below [see eqs (54)—(58)] that among the constitutive equations (1)—(9) only the evolution
equation for E; is affected by accelerating or retarding a given strain history. That means that
the map of the associated equilibrium curve is indeed defined by the system of constitutive
equations included in (1)-(9), apart from the absolute value of E®, which, like plasticity
models, must be computed from the condition F®(r) = 0.

In eqns (19)—(31), the absolute value of /‘®' is equal to the deviatoric norm of E{’.
However, we note that /® itself does not need to be positive : aithough ©® > 0, in view of
eqns (31) and (12), (13), the product R{¥ + E may be negative, in contrast to models of
plasticity. Even if this inner product is negative, viscoplastic flow takes place, provided a
positive overstress F exists. Thus, the governing strain-stress relation for the equilibrium
curve has in general the form of a rate-dependent functional.

Let te[0, T], and assume that inelastic loading is involved [cf. eqn (17)], as well as
that

RfE"(l) . E([) >0 (32)
is satisfied. Then
[(E) — HE:E)HD ::S,(E) > 0’ (33)

if 1[0, T, and the equations for £ = 0 in eqns (19)—(31) represent a plasticity law because
of the fact that the condition

F® =0 and R®-E>0 (34a,b)

for plastic loading is satisfied. In (34b), equality corresponds to the case of so-called neutral
loading. Now consider such a history of strain, which satisfies conditions like (17) and (34)
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in time intervals where £ < 0 is not valid. Then. the constitutive equations (19)-(31) for
this history of strain represent a plasticity law.

4. LIMIT PROCESSES

For convenience, we discuss limits in the constitutive model (1)—(9) with reference to
strain-controlled processes. Let E(-) be a strain history. For r€[0, «0) and ae (0, c0) we
assign to E(¢) an accelerated (x > 1) or retarded (x < 1) strain curve £*(*) defined by

&(r):= E(an) = E(1), (35)
Ti= . (36)

The physical meaning of £%(-) is that the same strain path is traversed faster (« > 1) or
slower (ax < 1) for ¢ > 0. For our purpose, it suffices to restrict the analysis in the following
to the interval [0, 7], 0 < T < oc. To avoid technical details, we suppose E(-) to have on
[0, T] continuous time derivatives up to second order.

The strain curve £*(+) induces a strain-controlled process in which the variables T, &,
k, E., E. s, F, f, R, © are written as Z* E*. £°. &, &. &% F* /* R, 0, respectively.
According to eqns (1)—(9), we have

SE" 7) —38’ { 98’ !
g & =g s g &,
FH1) = FZH0.E0(0.40) = /() =4 ().

£2(0=TE0. (1) = (E) - E)P - (B —E*(1)P

CFE (.24 (1) 3

R = — - = (X -EN)",
cZ*(1) 277(1) )
05(1) == O(Z* (1), E*(1). £%(1)) 37N
and, therefore,
d d d " /o d A
. x — 9 N o o ¥ 3 R o1
SE ‘.,u<d’8 (1) dIS,(r))+A(trd’€ (t))l, (38)
Yern = T 39
d[ l(,)' ¥ * |(’) ( )
d — - d x d ~X ) —
LE = d’a(z)f/»(df, (1)).. (1), (40)
Eié"(r) = B —4£7(1) d. t 41)
df - / A )drs ( )~ (
d o |dg, . Fap
d[v ([)“dlal(l)[n‘ F - (42a’b)

In order to refer the strain-controlled process to the strain E(7), we introduce the following
definitions, representing a rescaling of the strain-controlled process :
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T (1):=Z"(1). (43)
& (1) =E"(1). (44)
k(1) = A*(1). (45)
El(r):= & (1). (46)
Elr) =&, (47)
Fi2)=27(1) = F(T(1). &(1). k(1)) = 1 (1) = K7 (7). (48a—d)

[0) = f7() = FT*. E(0) =  L(THD) =& @) (T (1) - &))", (49a-d)

ORI (1). &0 kM) 3

Ri(7) == A1) = - - (T*(1) =& ()", (50)
cT(1) 2/*(1)
O*(1) = (1) = O(T*(1). & (1), k*(1)). (51
In addition. we define
d d |
(= BN 2
Ry ‘!dfk(r) I (52)
o0 that. in view of eqns (42a) and (47).
d 1d
ST = - ). 3
g 0= 70 (53)

In the following, we focus on the nontrivial case in which the restriction of E(-) on [0, T
(i.e. the strain curve E: [0, T] — %) induces inelastic loading for every process with ae (0,
x:). Then, using the relations (35), (36) as well as (43)--(53), it is straightforward to show
that eq (37) reduces to

Y = Yew+ Ye

ar ()*d[ c(f)+dl T,

and eqns (38)-(42) to
d—T“(t =2 dE dE’ )\ j th 1 54)
dr )~-u<d[ (1)—d[ .(l)+/~ L (01, (
d ., L
d’Ei(T)— o R (). (55)
95 nH= ‘EE’(I) b 4 f)\ (t 56)
qre =g =gt )5 ) ¢

d % 7d X
L K0 = =k 5. (57)
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91(1 7!:"(])
at =, (58)

For the five ordinary differential equations (54) (58). the initial conditions are given by

T (s = 0) = T(0). (59

EX(r = 0) = E0) = E°U = 0)— - TP(0), (60)
2u

(r=0) = &0). (61)

(0= 0) = k(0). (62)

s = 0):= x(0). (63)

for every xe (0, x ). With the aid of these initial conditions, equations (54)—(58) can be
integrated to obtain

T (1) = 2utE(r) — EX(0)) + A(tr E()) 1, (64)

E‘n =E(©0)+ ‘ Fq(:) “(7) di. (65)

1) = E0)e " Oy 4 ~v(‘(€ Pt () di, (66)

K1) = k(0)(e 7 MOy (] — (e P Oy, (67)

s (1) = s(0) + ( Fymdi. (68)
AP

JO

4.1. An estimate for F*(t)
Before proceeding to calculate, e.g. limits for x — o¢ or o« — 0, we derive an estimate
for £7(r). In view of eqn (18), #*(1) satisfies the differential equation

d 7 7 ()3(1

d
FHN+ -F 1) = _;1 /I (n r€1(7)>
ds F

F=0) = F0) = F(T(0). £0). k(0)). (69)

Taking into account the relations (33)-(36) and (43) - (51). as well as the initial conditions
(59) -(63), it is straightforward to conclude from eqn (69) that

. (CNF
Frn+ - ) F (1) = 2u(R (1) - E(1)).
Ar
F(r=0) = F), (70)

or. after integration,
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F1(1) = F(O)[e LJf@‘“‘““)jLJ 2ufe s o) Re(D) B 7 (1)
) / 0

Note that. by virtue of eqns (49) and (50).

R = /% (72)
and, therefore,
R E() < 2 IE@)I. (73)
Also. by eqns (51) and (12), (13),
O (1) > 3u>0. (74)

The relations (73) and (74) may be utilized to estimate the second term on the right-hand-
side of eqn (71) as follows:

Dpfe w o) - B() d7 < j 2 \/%(e—%'“)nE(f)n dr. (75)

JO ’ 0

Since inelastic loading is supposed tor every a€(0, oo) and re{0, 77, it follows from eqns
(71) and (75) that

r

3u s 3 3n _ ., _
0 < F(1) < F(0)[e wf)+J 2u\£(e;""))||E(t)H ds, (76)
’ 0

for every 1€ [0, T]. where again use has been made of eqn (74).
4.2, Limits for x — .
In the case of very fast motions (x — oc), the material response reduces to the spon-
tangous elasticity law :
T’ (1)= 11Lm T(1) = 2u(E() — E(0)) + A(tr E())1. 7

In addition. we have

dT, y =2 ,dEr ”tEE 1=1 ST"‘t 78
T 0 =2 B0+ SE 1= Jim =T, (78)

To show (77). we divide (76) by ar. so that

F(n _FO)y, e [2u f3 D\t 4
o<W rr—(w—)(e ;,'J+J ‘“\/5<e~i—i‘<f-”)||lz(t)u dr. (79a,b)

xAF ar o X

Taking into account the properties of E(-), applying the theorem on uniform convergence
and Riemann integration [see e.g. Apostol (1965: p. 399)], it can be readily shown that the
right-hand-side of eqn (79} converges to 0 as « — o0. Consequently, (79) implies



Viscoplasticity laws 159

Fi
lim “_ 0. {(80)

2z = X edd

By following similar steps to those in deriving eqn (80). the results

Tim (EZ(1). (). 80, K(1)) = (E.(0). 5(0). £(0). k(0)) (81)

can be deduced from eqns (65)—(68). In other words. the internal variables are frozen at
their initial value. Finally, by substituting eqn (81) into (64). one obtains (77).
The proof of eqn (78) is based on the result

lim E*(1) = 0. (82)

X r

which follows from eqns (80), (55) and the fact that 1lim IR ()] = \j [see eqn (72)]. Then,
comparing eqn (77) with (54) together with (82), one obtains (78).

4.3 Limits for x - 0

4.3.1. Calculation of’l% F*(t). Let te (0, 7). In view of the fact that

lim (e FENIED) =
20 / WE(r)yy < if f=1t

(7€{0, T17), and using Arzela’s theorem on bounded convergence and Riemann integration
[see e.g. Apostol (1965: p.405)], one finds that

“.Enoj (e %" "B 7 = 0.
[V

Then, from egn (76) it follows that

. FO) if =0
lim F*(1) = N . (83a,b)
x>0 0 i e (0, ]

4.3.2. Calculation of l% (1/ar)F*(t). The calculation of the limit (1/xr) F*(¢) as o« — 0
is based on the following theorem.

Theorem: Let ae D:=(0, 1}, and let the real-valued functions ¢,(t) and g,(?) be smooth for
te[0, 71,0 < T < . Furthermore, suppose that the functions ¢,{7) are uniformly bounded
from below in the form

@, ()= M>0. M=const. (84)

and that 11i_r'r(1] g,(r), as well as li{r}] g,(1) and ligll] @, (). are bounded. Then

Y WA o gaD)
111{1}) L ;(e - ”‘L w,(u)du"]y’(l)d[ = lm}'j?,(l) (85)

where 4 = const. > 0.

Proof: The assumed properties for g,(¢) and ¢,(1) allow one to establish the result
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1

A A [P e 940
- - @ ) du — y ngj(u;du g
ja(e ) Jg.A1)dr Jodf g Vo &

_gﬂi ]i‘ Ap,(ludf g}‘@‘_ " _4 'q)[u)du (g:(’)) d- 86
A0 e /)cpq(O) O(e [ ) @.(D)) 89

where use has been made of the formula for integration by parts. Then, eqn (85) may be
obtained from eqn (86), if in addition the relations

o 1 9:(0)
1 mie ‘ @, tu) du 0 87
114 0 '\L ) (Pi(o) ( )
and
T gD\ .
lim | (e o) =% di=0 (88)
x«»OJO !\ " }((p ([))

are satisfied. Equation (87) follows from the inequalities

t AM
0<e 1l’,(p’““d“ <e” VT/‘

which are implied by eqn (84), as well as from the fact that g.(¢) and ¢,(¢) are bounded. To
obtain eqn (88). we recall from the properties of g,(7) and ¢,(2) that (g,(1)/ . (1)) is bounded
for every ae D, and in particular for the limit as x — 0. Thus, there exists a constant L,
0 < L < x¢, so that the relation

I |npr ((,D (1))

~

1s satisfied for every xe D. Then.

'1' i‘ u"x(wdux Z’L(Q)' d“]
X ,)((p,(;) !
rom g DY
e »’l(mn)ld’

N

Therefore,

e 4 P
: { = p i) du q;z(t) s
O o R

This relation implies eqn (88), which completes the proof of the theorem.
Now, we shall use the theorem to show first that 1i£r(1) (F*(1)/ar) 1s bounded for ¢ (0,

T]. With respect to inequality (79). we have to show that
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S T -
_hm. —{e =" "VED)|,di

0

is bounded. By sctting 4 = 3 r. @,(1) = | and ¢,(1) = |E(#) , in eqn (85),

, R 7 _ ,
]m?\ e Y ")‘E(f)‘i,,di:‘\E(t)\}n<7;.

‘{I xr -

Because of the properties of the strain curve considered. one can establish, using this
relation in incquality (79). the desired estimate

F ,
lim ) < E(ny , <« s forre(0.7T]. (89)
AT

Next. return to eqn (71). and divide both sides by

. Foy e o
I‘I({) = ‘t’ ”‘l‘(")uudu 1+ ' I
via ‘

o

o | O RE() - E(7) dF. (90)

xr 1 )

In this equation. we form the limit for « — 0 and re (0, T]. Evidently,

T o o
Ml w e R(7) - E(T) dE (91)

b .
lim  F7(71) = lim
s PR o

w0

for re (0. T).
By using the theorem above. with 4 = 1 rand

@, (1) = O"(1). (92)

g,(1) = R/ - E(1). (93)

eqn (91) leads to

im |y = m R B 0., (94)
7 ~‘V1" v o () @7(I]

Of course. to justify the application of the theorem. we have to show that the conditions
for (85) are satisfied. In essence. we must show that g,(¢), defined by eqn (93), as well as
g.{t). are bounded for » — 0. Also, we must show for ¢,(), defined by eqn (92), that
Jigq) (1) 1s bounded [¢,(7) satisfies the condition (74)].

Since [¢,(N1 < . E() by eqn (72). we have |lim ¢, (1)| < oc. In order to prove that
Ji{l}' ¢,(1) is also bounded. it suffices to verify that | R*(1)} is bounded for o — 0. In view of
(50)..
Rin=_ (Pogor 0T SO O =80 (g g,
2170 400y
(95)

[t 1s remarked that the back stress and the vuriable for the isotropic hardening satisfy the
inequalities (14) and (15) for every process and. therefore, lin}] & (1) and lirr(l)k’(t) are
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bounded. Thus, with respect to eqn (95). R(7) is bounded for o — 0 if (T*())°, T*(#) and
&(1) are bounded for a — 0 (f*(r) = k*(r) = k, > 0 for viscoplastic loading). Clearly, by
the definitions (48c) and (49c), as well as the result (83b), hm f*(t) and, therefore,
lim (T°‘(t))D is bounded for 7€ (0, 77.

Regarding eqns (55), (56) and (58), &(1) is proportional to R¥(¢) and &(z) (which
remain bounded for « — 0). In addition, &(r) is proportional to (1/xr)F*(f), which, by eqn
(89), remains bounded as well for & — 0 and ¢t €(0, 7. Thus, H}iy}) &l < o for te(0, T).
By means of the same arguments, and with respect to eqn (54), it is also possible to show
that || lim T*(0)| < o for te (0, TJ.

Furthermore, following similar steps, it can be shown that H}i_{r}) ©*(1)| < oo forte(0,T],

where @°(¢) is defined by eqns (51) and (12). This completes the verification of eqn (94).
So, taking into account eqn (94), it follows from (90) that

0 if 1=0 and F(0) =0
F? e if +t=0 and F(0)>0
lim a(r’) _ . =0 (96a—c)
o lim RAEO e o
a— Q0 @1()

4.3.3. Calculation of the limit functions. Let .#*(t) be defined by
A (1) = (T(0). B (1), &(0), k7 (1), 57(1)).

We shall calculate the limit functions li‘rr(1) #*(1) implicitly, as solutions of corresponding
ordinary differential equations. For this purpose, we distinguish between two cases, € (0,

Tlort=20

(1) e (0, T]. By eqn (83b), the overstress F*(r) vanishes as o — 0 for every re (0, T].
This means that, as x — 0, the state trajectory converges to the associated equilibrium
trajectory determined by the given strain curve E: [0, T] > & and the assumed initial
conditions (59)—(63). Thus

lim (1) = HE(), 97

where

AP = (T (). EE (1), E2 (1), kP (2), s (1)).

By virtue of eqns (79a) and (94). as well as of the fact that 11m @*(t) > 3u >0,
viscoplastic loading for each x < (0, 1] implies

lim R (1) - y () = (98)

Equality in (98) corresponds to the case of so-called neutral loading. In other words, for
this case, the strain-stress relation of the associated equilibrium curve reduces to the
plasticity law defined by the differential equations (23)—(34). In addition, using the definition

AP0 = (TP (). EP (1), 5 (1), k) (1), 89(1)), 9

we have
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d : x 77 (E)
& <111rr% M (1)> =.#5(). (100)

It is also interesting to know the behaviour for the functions lim M(1), where (1) is
defined similarly to eqn (99). To determine this, we insert the relations

lim R¥(7) = R,
lim ©(1) = 0",
in (96¢), so that

F _

s

lim
x—=0 ~F

by virtue of eqns (30) and (33). Then it is clear that eqns (54)—(58) imply
lim M) = P (). (101)
(2) t = 0. In this case, we have
lim .4*(0) = .#(0) == (T(0), E;(0), £(0), k(0). 5(0)). (102)

If .#(0) # .#'F(0), the limit functions JIII}) (1) are discontinuous from the right at the

point ¢ = Q. If .#(0) = .#'%(0), the limit functions lig}) A*(1) are smooth at ¢ = 0. For the
time derivatives of the limit functions,

d /. AW, < if #(0)=.4%(0)
[ (llm %“(z)ﬂ . {
dr\==0 -0 does not exist in the proper sense  if .#(0) # .4 ®(0)
(103)
holds.

On the other hand, from eqns (96a,b) and (54)—(58), we have

o (o it #(0) = 4 (0)

lim [A#* (D], _0 = ¢ , (104)
20 [does not exist in the proper sense  if  .#(0) # #®(0)
where

= (RuE(@) + A(tr E()1], _,.0.0,0.0).

5. DISCUSSION AND CONCLUDING REMARKS

As it has been shown [see eqn (77)], the material response approaches the spontaneous
elasticity law for very fast motions (x — oc). In particular, as a — o0, not only T*(z)
converges to T(¢), but also [see eqn (78)] (d/d¢) T*(¢) to (d/d¢) T*(r). Obviously, a limit
process analogous to that for x — o, but depending on material parameters, can also be
carried out. To this end, one has to consider = 1 and r — 2.

The main results for very slow motions (« — 0) are that
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' i /) it =0 .
hm .27 = ) (105)
v Latny if 1e(0.T]
by virtue of eqns (97) and (102).
23 1 it 1=0 and .#(0)=./%(0)
1,(lim ) = y does not exist in the proper sense  if =0 and .#(0) #.#%(0)
( Pl | )
Lt il re(0.7]
(106a—)
by virtue of (100). (103). and
4 it =0 and .#0)=.4"(0)
. i :
lim . #7(7) = does not existin the proper sense if - 1=0 and . #(0) # A(0).
VST it re(0. 7

(107a-c)

in view of eqns (101) and (104).

The meaning of these results 15 obvious: it . #(0) # . #™(0) and x — 0, the actual
varlables are discontinuous. according to eqn (105). at 1 = 0 from the initial value .#(0) to
the value - #*'(0) and equal . #'"(1) for te(0. T). If .#(0) = .#‘®(0), then, according to
egn (1035), !i?}y’ A7) = 4P (1) evervwhere on [0, T]. However, the behaviour for the time
derivatives 1s different. Although Vlil‘]}\.//"’(f) converges to .#'F'(f) for te(0, T] as well, at
r=0and for.4(0) = ./"(0). we have lim [ 7(0)], ., # [ 7™, _, by eqn (107a) [cf. also
eqn (106a)].

It should be mentioned that the analysis for x — 0 remains the same if limit processes
depending on material parameters are studied. 1.¢. if we consider r » 0 at o« = 1.

According 1o Tsakmakis (1994). a material is defined to be of viscoplastic type if the
stress is determined by a rate-dependent functional of the strain which satisfies the following
two properties: (1) the functional assigns an equilibrium curve to each process, where the
equilibrium stress is given as a tunctional of the strain, and (2) in the case of infinitely slow
motions. the constitutive relation between the strain and the stress reduces to the constitutive
relation governing the response of the associated equilibrium curve. At the same time, the
constitutive relations for the associated equilibrium curve reduce to a plasticity law.

Clearly. the investigations in the present work indicate that the constitutive model
considered in Section 3 represents in fact a rate-dependent functional of the viscoplastic
type. according to the definition above.

Finally. we want to discuss a simple modification of the constitutive model given in
Section 3. It is obvious. in view of the toregoing analysis for very fast and very slow motions,
that in the constitutive model (1) 9). only the evolution equation for E; can be affected by
a formulation of the constitutive equations with respect to a transformed time z, where

d- = dny dr.

In this equation. @ is defined (o be a constitutive function. For practical purposes, ® can
be chosen as a function of the overstress £

dz R

= O F))). (108)
dr
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Then. with respect to egn (3), the modified evolution equation takes the form

i SF
“E-"TR (1092)
d- r
or
1 ¥
N AL (109b)
dr ’

where @({F>) = < F>®( F ). Ttappears convenient Lo require for the function &[0, «]—
R, the properties

. . dbvy
Oy =0 aswellas Oy >0 and i >0 for xe(0,x). (110)
dx

As a particular case. we have
AF ) = P (111)

m being a4 material parameter. Equations (1) (9). together with the evolution equation for
E, replaced by equations (109)-(111). constitute a viscoplasticity model which is the basis
for many works by Chaboche [see e.g. Chaboche (1977, 1993)].

It 1s not difficult to see that time transformations, e.g.. of the form (108) and (110),
which represent a monotonous function between ¢ and -, do not affect our results for very
fast and very slow motions. We have only to regard the accelerated or retarded strain curve
in our investigations as related to a given strain curve, which is parameterized by the time
=1 because of the monotonous relation between ¢ and =, retarding or accelerating a strain
path parameterized by - implies retarding or accelerating the same strain path parameterized
by ¢. respectively.
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